Grigori Perelman

Age, Biography and Wiki

Grigori Perelman was born on 13 June, 1966 in Leningrad, Soviet Union, is a Russian mathematician. Discover Grigori Perelman’s Biography, Age, Height, Physical Stats, Dating/Affairs, Family and career updates. Learn How rich is He in this year and how He spends money? Also learn how He earned most of networth at the age of 54 years old?

Popular AsN/A
OccupationN/A
Age54 years old
Zodiac SignGemini
Born13 June 1966
Birthday13 June
BirthplaceLeningrad, Soviet Union
NationalityRussian

We recommend you to check the complete list of Famous People born on 13 June.
He is a member of famous with the age 54 years old group.

Grigori Perelman Height, Weight & Measurements

At 54 years old, Grigori Perelman height not available right now. We will update Grigori Perelman’s Height, weight, Body Measurements, Eye Color, Hair Color, Shoe & Dress size soon as possible.

Physical Status
HeightNot Available
WeightNot Available
Body MeasurementsNot Available
Eye ColorNot Available
Hair ColorNot Available

Dating & Relationship status

He is currently single. He is not dating anyone. We don’t have much information about He’s past relationship and any previous engaged. According to our Database, He has no children.

Family
ParentsNot Available
WifeNot Available
SiblingNot Available
ChildrenNot Available

Grigori Perelman Net Worth

He net worth has been growing significantly in 2018-19. So, how much is Grigori Perelman worth at the age of 54 years old? Grigori Perelman’s income source is mostly from being a successful . He is from Russian. We have estimated Grigori Perelman’s net worth, money, salary, income, and assets.

Net Worth in 2020$1 Million – $5 Million
Salary in 2019Under Review
Net Worth in 2019Pending
Salary in 2019Under Review
HouseNot Available
CarsNot Available
Source of Income

Grigori Perelman Social Network

Instagram
Linkedin
Twitter
Facebook
WikipediaGrigori Perelman Wikipedia
Imdb

Timeline of Grigori Perelman

2020

As of 2020, there remain some mathematicians who are doubtful that the Poincaré and geometrization conjectures have been proven, although it is universally acknowledged that Perelman made tremendous strides in the theory of Ricci flow. For these observers, the troublesome parts of the proof are in the second half of Perelman’s second preprint. For instance, Fields medalist Shing-Tung Yau said

2019

Perelman’s proofs are concise and, at times, sketchy. The purpose of these notes is to provide the details that are missing in [Perelman’s first two preprints]… Regarding the proofs, [Perelman’s papers] contain some incorrect statements and incomplete arguments, which we have attempted to point out to the reader. (Some of the mistakes in [Perelman’s first paper] were corrected in [Perelman’s second paper].) We did not find any serious problems, meaning problems that cannot be corrected using the methods introduced by Perelman.

In this paper, we shall present the Hamilton-Perelman theory of Ricci flow. Based on it, we shall give the first written account of a complete proof of the Poincaré conjecture and the geometrization conjecture of Thurston. While the complete work is an accumulated efforts of many geometric analysts, the major contributors are unquestionably Hamilton and Perelman. […] In this paper, we shall give complete and detailed proofs […] especially of Perelman’s work in his second paper in which many key ideas of the proofs are sketched or outlined but complete details of the proofs are often missing. As we pointed out before, we have to substitute several key arguments of Perelman by new approaches based on our study, because we were unable to comprehend these original arguments of Perelman which are essential to the completion of the geometrization program.

Although it may be heresy for me to say this, I am not certain that the proof is totally nailed down. I am convinced, as I’ve said many times before, that Perelman did brilliant work regarding the formation and structure of singularities in three-dimensional spaces—work that was indeed worthy of the Fields Medal he was awarded. About this I have no doubts […] The thing is, there are very few experts in the area of Ricci flow, and I have not yet met anyone who claims to have a complete understanding of the last, most difficult part of Perelman’s proof […] As far as I’m aware, no one has taken some of the techniques Perelman introduced toward the end of his paper and successfully used them to solve any other significant problem. This suggests to me that other mathematicians don’t yet have full command of this work and its methodologies either.

2014

In 2014, Russian media reported that Perelman was working in the field of nanotechnology in Sweden. However, shortly afterwards, he was spotted again in his native hometown, Saint Petersburg.

2013

Since publication, Kleiner and Lott’s article has subsequently been revised twice for corrections, such as for an incorrect statement of Hamilton’s important “compactness theorem” for Ricci flow. The latest revision to their article was in 2013. In 2015, Abbas Bahri pointed out an error in Morgan and Tian’s exposition, which was later fixed by Morgan and Tian and sourced to a basic computational mistake.

2012

The writer Brett Forrest briefly interacted with Perelman in 2012. Perelman refuses to talk to journalists. One who managed to reach him on his mobile was told: “You are disturbing me. I am picking mushrooms.”

2011

A Russian documentary about Perelman in which his work is discussed by several leading mathematicians including Mikhail Gromov was released in 2011 under the title “Иноходец. Урок Перельмана,” “Maverick: Perelman’s Lesson.”

In April 2011, Aleksandr Zabrovsky, producer of “President-Film” studio, claimed to have held an interview with Perelman and agreed to shoot a film about him, under the tentative title The Formula of the Universe. Zabrovsky says that in the interview, Perelman explained why he rejected the one million dollar prize. A number of journalists believe that Zabrovky’s interview is most likely a fake, pointing to contradictions in statements supposedly made by Perelman.

2010

On 18 March 2010, it was announced that he had met the criteria to receive the first Clay Millennium Prize for resolution of the Poincaré conjecture. On 1 July 2010, he rejected the prize of one million dollars, saying that he considered the decision of the board of the Clay Institute to be unfair, in that his contribution to solving the Poincaré conjecture was no greater than that of Richard S. Hamilton, the mathematician who pioneered the Ricci flow partly with the aim of attacking the conjecture. He had previously rejected the prestigious prize of the European Mathematical Society, in 1996.

On 18 March 2010, Perelman was awarded a Millennium Prize for solving the problem. On June 8, 2010, he did not attend a ceremony in his honor at the Institut Océanographique, Paris to accept his $1 million prize. According to Interfax, Perelman refused to accept the Millennium prize in July 2010. He considered the decision of the Clay Institute unfair for not sharing the prize with Richard S. Hamilton, and stated that “the main reason is my disagreement with the organized mathematical community. I don’t like their decisions, I consider them unjust.”

2007

It is uncertain whether his resignation from Steklov and subsequent seclusion mean that he has ceased to practice mathematics. Fellow countryman and mathematician Yakov Eliashberg said that, in 2007, Perelman confided to him that he was working on other things but it was too premature to talk about it. He is said to have been interested in the past in the Navier–Stokes equations and the problem of their existence and smoothness.

2006

In August 2006, Perelman was offered the Fields Medal for “his contributions to geometry and his revolutionary insights into the analytical and geometric structure of the Ricci flow”, but he declined the award, stating: “I’m not interested in money or fame; I don’t want to be on display like an animal in a zoo.” On 22 December 2006, the scientific journal Science recognized Perelman’s proof of the Poincaré conjecture as the scientific “Breakthrough of the Year”, the first such recognition in the area of mathematics.

In June 2003, Bruce Kleiner and John Lott, both then of the University of Michigan, posted notes on Lott’s website which, section by section, filled in many of the details in Perelman’s first preprint. In September 2004, their notes were updated to include Perelman’s second preprint. Following further revisions and corrections, they posted a version to the arXiv on 25 May 2006, a modified version of which was published in the academic journal Geometry & Topology in 2008. At the 2006 International Congress of Mathematicians, Lott said “It has taken us some time to examine Perelman’s work. This is partly due to the originality of Perelman’s work and partly to the technical sophistication of his arguments. All indications are that his arguments are correct.” In the introduction to their article, Kleiner and Lott explained

In June 2006, the Asian Journal of Mathematics published an article by Zhu Xiping of Sun Yat-sen University in China and Huai-Dong Cao of Lehigh University in Pennsylvania, giving a complete description of Perelman’s proof of the Poincaré and the geometrization conjectures. Unlike Kleiner and Lott’s article, which was structured as a collection of annotations to Perelman’s papers, Cao and Zhu’s article was aimed directly towards explaining the proofs of the Poincaré conjecture and geometrization conjecture. In their introduction, they explain

In July 2006, John Morgan of Columbia University and Gang Tian of the Massachusetts Institute of Technology posted a paper on the arXiv in which they provided a detailed presentation of Perelman’s proof of the Poincaré conjecture. Unlike Kleiner-Lott and Cao-Zhu’s expositions, Morgan and Tian’s also deals with Perelman’s third paper. On 24 August 2006, Morgan delivered a lecture at the ICM in Madrid on the Poincaré conjecture, in which he declared that Perelman’s work had been “thoroughly checked.” In 2008, Morgan and Tian posted a paper which covered the details of the proof of the geometrization conjecture. Morgan and Tian’s two articles have been published in book form by the Clay Mathematics Institute.

In May 2006, a committee of nine mathematicians voted to award Perelman a Fields Medal for his work on the Poincaré conjecture. However, Perelman declined to accept the prize. Sir John Ball, president of the International Mathematical Union, approached Perelman in Saint Petersburg in June 2006 to persuade him to accept the prize. After 10 hours of attempted persuasion over two days, Ball gave up. Two weeks later, Perelman summed up the conversation as follows: “He proposed to me three alternatives: accept and come; accept and don’t come, and we will send you the medal later; third, I don’t accept the prize. From the very beginning, I told him I have chosen the third one … [the prize] was completely irrelevant for me. Everybody understood that if the proof is correct, then no other recognition is needed.” ” ‘I’m not interested in money or fame,’ he is quoted to have said at the time. ‘I don’t want to be on display like an animal in a zoo. I’m not a hero of mathematics. I’m not even that successful; that is why I don’t want to have everybody looking at me.’ ” Nevertheless, on 22 August 2006, Perelman was publicly offered the medal at the International Congress of Mathematicians in Madrid “for his contributions to geometry and his revolutionary insights into the analytical and geometric structure of the Ricci flow”. He did not attend the ceremony, and declined to accept the medal, making him the only person to decline this prestigious prize.

2005

Perelman quit his job at the Steklov Institute in December 2005. His friends are said to have stated that he currently finds mathematics a painful topic to discuss; some even say that he has abandoned mathematics entirely.

2003

In April 2003, Perelman visited the Massachusetts Institute of Technology, Princeton University, Stony Brook University, Columbia University and New York University to give short series of lectures on his work, and to clarify some details for experts in the relevant fields.

Cao and Zhu’s paper underwent criticism from some parts of the mathematical community for their word choices, which some observers interpreted as claiming too much credit for themselves. The use of the word “application” in their title “A Complete Proof of the Poincaré and Geometrization Conjectures – Application of the Hamilton-Perelman Theory of Ricci Flow” and the phrase “This proof should be considered as the crowning achievement of the Hamilton-Perelman theory of Ricci flow” in the abstract were particularly singled out for criticism. When asked about the issue, Perelman said that Cao and Zhu had not contributed anything original, and had simply reworked his proof because they “did not quite understand the argument”. Additionally, one of the pages of Cao and Zhu’s article was essentially identical to one from Kleiner and Lott’s 2003 posting. In a published erratum, Cao and Zhu attributed this to an oversight, saying that in 2003 they had taken down notes from the initial version of Kleiner and Lott’s notes, and in their 2006 writeup had not realized the proper source of the notes. They posted a revised version to the arXiv with revisions in their phrasing and in the relevant page of the proof.

2002

In November 2002, Perelman posted the first of three preprints to the arXiv, in which he claimed to have outlined a proof of the geometrization conjecture, of which the Poincaré conjecture is a particular case. This was followed by the two other preprints in 2003.

1994

This was of interest since Cheeger and Gromoll had established the result under the stronger assumption that all sectional curvatures are positive. As the deformation from nonnegative to positive curvature is not well understood, the soul conjecture was proposed. In 1994, Perelman gave a short and elegant proof of the conjecture by establishing that in the general case K ≥ 0 , Sharafutdinov’s retraction P : M → S is a submersion.

Three notable papers of Perelman’s from 1994 to 1997 deal with the construction of various interesting Riemannian manifolds with positive Ricci curvature.

1990

In the 1990s, partly in collaboration with Yuri Burago and Mikhail Gromov, he made influential contributions to the study of Alexandrov spaces. In 1994, he proved the soul conjecture in Riemannian geometry, which had been an open problem for the previous 20 years. In 2002 and 2003, he developed new techniques in the analysis of Ricci flow, and provided a detailed sketch of a proof of Thurston’s geometrization conjecture, the full details of which were filled in by various authors over the following several years. As a special case, this solved in the affirmative the Poincaré conjecture, which had been a famous open problem in mathematics for the past century.

After his PhD in 1990, Perelman began work at the Leningrad Department of Steklov Institute of Mathematics of the USSR Academy of Sciences, where his advisors were Aleksandr Aleksandrov and Yuri Burago. In the late 1980s and early 1990s, with a strong recommendation from the geometer Mikhail Gromov, Perelman obtained research positions at several universities in the United States. In 1991 Perelman won the Young Mathematician Prize of the St. Petersburg Mathematical Society for his work on Aleksandrov’s spaces of curvature bounded from below. In 1992, he was invited to spend a semester each at the Courant Institute in New York University and Stony Brook University where he began work on manifolds with lower bounds on Ricci curvature. From there, he accepted a two-year Miller Research Fellowship at the University of California, Berkeley in 1993. After having proved the soul conjecture in 1994, he was offered jobs at several top universities in the US, including Princeton and Stanford, but he rejected them all and returned to the Steklov Institute in Saint Petersburg in the summer of 1995 for a research-only position.

However, it was widely expected that the process would be impeded by developing “singularities.” In the 1990s, Hamilton made progress on understanding the possible types of singularities which may occur, but was unable to provide a comprehensive description. Perelman’s articles sketched a solution. According to Perelman, every singularity looks either like a cylinder collapsing to its axis, or a sphere collapsing to its center. With this understanding, he was able to construct a modification of the standard Ricci flow, called Ricci flow with surgery, which can systematically excise singular regions as they develop, in a controlled way. The idea for Ricci flow with surgery had been present since a 1993 article of Hamilton, who had successfully carried it out in 1997 in the setting of higher-dimensional spaces subject to certain restricted geometric conditions. Perelman’s surgery procedure was broadly similar to Hamilton’s but was strikingly different in its technical aspects.

1982

His mathematical education continued at the Leningrad Secondary School #239, a specialized school with advanced mathematics and physics programs. Grigori excelled in all subjects except physical education. In 1982, as a member of the Soviet Union team competing in the International Mathematical Olympiad, an international competition for high school students, he won a gold medal, achieving a perfect score. He continued as a student of The School of Mathematics and Mechanics at the Leningrad State University, without admission examinations and enrolled to the university.

1980

Tobias Colding and William Minicozzi II have provided a completely alternative argument to Perelman’s third preprint. Their argument, given the prerequisite of some sophisticated geometric measure theory arguments as developed in the 1980s, is particularly simple.

1972

Cheeger and Gromoll’s soul conjecture, formulated in 1972, says:

1966

Grigori Yakovlevich Perelman (Russian: Григорий Яковлевич Перельман , IPA: [ɡrʲɪˈɡorʲɪj ˈjakəvlʲɪvʲɪtɕ pʲɪrʲɪlʲˈman] ( listen ) ; born 13 June 1966) is a Russian mathematician who has made notable contributions to Riemannian geometry and geometric topology.

Grigori Yakovlevich Perelman was born in Leningrad, Soviet Union (now Saint Petersburg, Russia) on 13 June 1966, to Russian-Jewish parents Yakov (who now lives in Israel) and Lyubov (who still lives in Saint Petersburg with Grigori). Grigori’s mother Lyubov gave up graduate work in mathematics to raise him. Grigori’s mathematical talent became apparent at the age of ten, and his mother enrolled him in Sergei Rukshin’s after-school mathematics training program.

1950

Perelman’s most notable work in this period was in the field of Alexandrov spaces, the concept of which dates back to the 1950s. In a well-known 1992 paper coauthored with Yuri Burago and Mikhail Gromov, Perelman laid out the modern foundations of this field, with the notion of Gromov-Hausdorff convergence as an organizing principle. In 1993, Perelman developed a notion of Morse theory on these non-smooth spaces. For his work on Alexandrov spaces, Perelman was invited to lecture at the 1994 International Congress of Mathematicians.

1904

The Poincaré conjecture, proposed by French mathematician Henri Poincaré in 1904, was one of the key problems in topology. Any loop on a 3-sphere—as exemplified by the set of points at a distance of 1 from the origin in four-dimensional Euclidean space—can be contracted into a point. The Poincaré conjecture asserts that any closed three-dimensional manifold, such that any loop can be contracted into a point, is topologically a 3-sphere. The analogous result has been known to be true in dimensions greater than or equal to five since 1960 as in the work of Stephen Smale. The four-dimensional case resisted longer, finally being solved in 1982 by Michael Freedman. But the case of three-manifolds turned out to be the hardest of them all. Roughly speaking, this is because in topologically manipulating a three-manifold there are too few dimensions to move “problematic regions” out of the way without interfering with something else. The most fundamental contribution to the three-dimensional case had been produced by Richard S. Hamilton. The role of Perelman was to complete the Hamilton program.